Like it? Share it!

Single-atom wires could keep Moore’s Law going for a while longer

Moore’s Law¬†describes a long-term trend in the history of computing hardware: the number of transistors that can be placed inexpensively on an integrated circuit doubles approximately every two years. A threat to this rule is that as wires shrink, resistance grows exponentially, creating a bottleneck. But scientists have found that by creating wires that are single-atom strings of silicon atoms, they can overcome this problem.

Over time the copper tracks on microchips have been shrinking, and the resulting massive increases in resistance are what have been threatening Moore’s Law, by slowing down progress in chip manufacturing.

But now a team of researchers have created low-resistivity nanowires by stringing together individual atoms of silicon, reports Scientific American. These wires are four atoms wide and one atom thick, and the researchers have shown that their resistivity doesn’t vary with size. That basically means Ohm’s law holds for these nanowires, physics fans.

But how the hell does it work? The secret ingredient is phosphorus. The researchers include a little, evenly spaced along the wires, as it donates electrons to the silicon crystal, in turn promoting electrical conduction. Hey presto, wires that scale perfectly to the nano-scale.

And how do they help? Well, it turns out that the wires have the carrying capacity of copper, which means they could be used to replace the printed copper lines in microchips.

Via


8 notes

Show

  1. nativechef reblogged this from iheartchaos
  2. iheartchaos posted this

blog comments powered by Disqus






All profits from the sale of IHC T-shirts and stickers are donated to charity.
This month's charity is Kiva, and you can help by joining the IHC lending team.






See all IHC Reviews here

Want to submit a review for IHC and make a few bucks?
Please drop us a line and let us know what movie, game, book or TV show you want to review and we'll hold your spot. See full review guidelines here.